This article was downloaded by: [University of California, San Diego]

On: 09 August 2012, At: 14:27 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Multichromic Dye Synthesis and Its Absorption Properties with Cyclodextrins

Sung-Hoon Kim ^a , Myung-Sik Choi ^a , Byung-Soon Kim ^b , Young-Min Park ^b & Young-A Son ^b

^a Department of Textile System Engineering,
 Kyungpook National University, Daegu, S. Korea
 ^b BK21 FTIT, Department of Organic Materials and
 Textile System Engineering, Chungnam National
 University, Daegeon, S. Korea

Version of record first published: 22 Sep 2010

To cite this article: Sung-Hoon Kim, Myung-Sik Choi, Byung-Soon Kim, Young-Min Park & Young-A Son (2007): Multichromic Dye Synthesis and Its Absorption Properties with Cyclodextrins, Molecular Crystals and Liquid Crystals, 472:1, 231/[621]-237/[627]

To link to this article: http://dx.doi.org/10.1080/15421400701547599

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 472, pp. 231/[621]-237/[627], 2007

Copyright © Taylor & Francis Group, LLC ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421400701547599

Multichromic Dye Synthesis and Its Absorption Properties with Cyclodextrins

Sung-Hoon Kim Myung-Sik Choi

Department of Textile System Engineering, Kyungpook National University, Daegu, S. Korea

Byung-Soon Kim Young-Min Park Young-A Son

BK21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daegeon, S. Korea

The inclusion complex properties of the multichromic dye in DMSO with three different type of cyclodextrins, namely α -, β - and γ -cyclodextrin were studied by absorption spectra measurements. The first order fading rates were also calculated by decoloration properties of the three inclusion complex conditions. Futhermore, the inclusion complex of different sizes of cyclodextrins was compared, which showed the evident decoloration data for interaction of the multichromic dye and cyclodextrins.

Keywords: absorption spectra; cyclodextrin; inclusion complexes; multichromic dye

INTRODUCTION

The properties of inclusion complex by cyclodextrins [1–7] on the coloration and decoloration behaviors were the subject of this study. Cyclodextrins are macrocyclic compounds built from oligosaccharides units which have the ability to include organic molecules into their capacity. Cyclodextrins (CDs) are chemically and physically stable molecules formed by the enzymatic modification of starch. The most commonly used cyclodextrins are α -, β - and γ -cyclodextrins which consist

Address correspondence to Young-A Son, BK21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 305-764, S. Korea. E-mail: yason@cnu.ac.kr

$$O-(CH_2)_6-N$$

$$N$$

$$O$$

FIGURE 1 Structure of the multichromic dye.

of 6–8 glucopyranose units, respectively [1–3]. The cyclodextrins are of great importance as useful host molecules to make an inclusion complex with various guest molecules which enter partly or entirely into the relatively hydrophobic cavity of CDs simultaneously expelling the few highenergy water molecules from inside, a property that enables them to be used in a variety of different chemistry applications. Thus, the physical, chemical and various important properties of guest molecules, which are encapsulated by CDs, may be drastically modified.

In the previous article [8], the dye showing multichromic effect within single dye molecular structure was synthesized and characterized to study their reversible coloration and decoloration properties whose molecular structure is shown in Figure 1 [9–16]. In this context, another important experimental attempt was considered to investigate the host-guest inclusion complexes between the novel multichromic dye and α -, β - and γ -cyclodextrins. The reaction mechanism of the host-guest inclusion is given in Scheme 1. The study clearly reveals that cyclodextrins could indeed form inclusion complexes with the prepared multichromic dye. Especially, this work focuses on the coloration-decoloration properties in terms of absorption spectral measurements. In addition, the first-order decoloration rate constants were also calculated and discussed.

EXPERIMENTAL

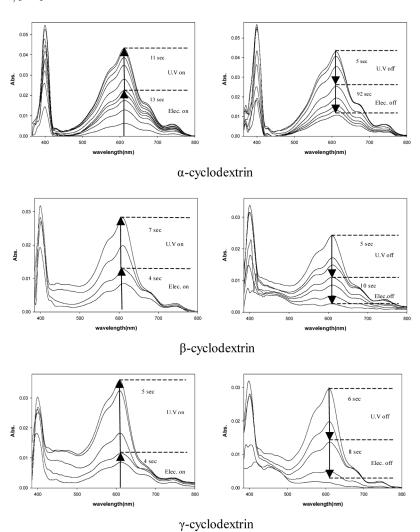
Synthesis of Multichromic Dye

The multichromic dye was prepared from the method described in previous work [8]. Using spiroxazine and viologen compound, this dye shows both the photochromic and electrochromic absorption properties within single molecular structure.

Spectral Behavior and Property

Chromism properties, namely reversible coloration and decoloration systems were measured. UV energy (365 nm) for photochromism and

SCHEME 1 Effect of three cyclodextrin inclusion complexes.


electric energy (2V) were given to the dye solution in DMSO. First-order kinetic model was fitted with the experimental data and rate constants were evaluated. The properties occurred by cyclodextrin inclusion complexes was investigated in detail.

First Order Decoloration Kinetics of α -, β - and γ -Cyclodextrin Inclusion Complex

Using three types of cyclodextrin having different size of cavity diameter, the experiments were performed. With the experimental data, the first order decoloration kinetic model was plotted and results were analyzed.

RESULTS AND DISCUSSION

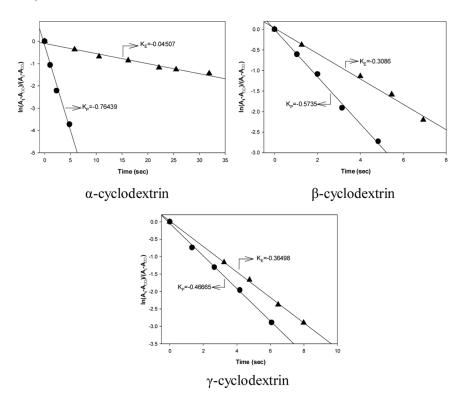
The cyclodextrin inclusion experiments with the multichromic dye were carried out. For spectral behaviors between the prepared multichromic dye and the three cyclodextrins, Figure 2 represents that the spectral absorption intensity increases with increasing induced light

FIGURE 2 Effects of α -, β -, γ -cyclodextrin inclusion complex on absorption spectral change and spontaneous decoloration behaviors in DMSO: dye concentration 6.35×10^{-4} mol/l, α -, β -, γ -CD concentration 1×10^{-3} mol/l.

and electric energy engagement. These absorption peaks are responsible for the ring-open merocyanine structure of spiroxazine and electron redox system of viologen moiety. After removing energy engagement, spontaneous decoloration behaviors of the absorption spectra were also determined. Figure 2 shows the resulting decoloration changes with viewpoint of α -, β - and γ -cyclodextrin admixture

media in DMSO. Due to different size of inner cavity diameter of cylcodextrins, the inclusion complex between cyclodextrins and multifunctional dye shows different host-guest interactions. These corresponding results could give interesting properties in terms of reversible color forming system and its kinetics.

As shown in Figure 2, when the energy engagement onto multichromic dye was removed, the absorption intensity at 605 nm gradually decreased. In the context of three cyclodextrin inclusions, this finding allowed the absorption to be monitored at $\lambda_{\rm max}$ (605 nm) as a function of time to obtain the color fading rate (k) in α -, β - and γ -cyclodextrin admixture media: a first-order fading rate can be obtained by the decoloration properties of the spiroxazine and viologen parts, which is given by Eq. (1) [8]:


$$(A_t - A_{\infty})/(A_i - A_{\infty}) = k \tag{1}$$

where A_i is the absorbance at 605 nm, A_t is the absorbance at 605 nm at any time t after UV irradiation. A_{∞} and k refer to the absorbance at 605 nm after 1h and first-order color changing rate constant, respectively. In this color changing process, the kinetic analysis predicts the logarithm of the difference between A_{∞} and A_t at time t to be linear with time, the slope giving the decoloration rate constant, k. First-order plots according to Eq. (1) for the multichromic dye are shown in Figure 3.

Figure 3 shows that the first-order decoloration rate constants of the dye in the viologen part from α -, β - and γ -cyclodextrin admixture conditions were lower than those of spiroxazine part, which indicate that the open-to-close reaction of spiroxazine occurs more rapidly than the redox system reaction of viologen. In addition, the decoloration rate constants of α -, β - and γ -cyclodextrin inclusion conditions were for α -cyclodextrin, k = 0.574 for β -cyclodextrin k=0.467 for γ -cyclodextrin, respectively. In the case of α -cyclodextrin admixture condition, the host-guest inclusion complex could be restricted due to the small cavity diameter size. Thus, the large amounts of spiroxazine moiety still remains in DMSO solution and the corresponding reversible decoloration behavior could proceed rapidly. In other words, in the case of γ -cyclodextrin admixture condition, some amount of spiroxazine dye could make inclusion complexes and the corresponding complexed dye was relatively restricted to proceed the reversible conversion to the its original dye structure.

CONCLUSIONS

From the viewpoint of chromism effect, the optical functions with photochromism and electrochromism are very interesting subjects.

FIGURE 3 First-order decoloration kinetic plot of the dye and α -, β -, γ -cyclodextrin in DMSO.

Thus, the multichomic dye showing both photochromic and electrochromic spectral changes, was synthesized. In addition, the different chromism properties of the inclusion complex i.e., multichomic dye were, observed using three different types of cyclodextrins as an encapsulating agent. The encapsulation of the multichromic dye into the inner cavity of the different sizes of α -, β - and γ -cyclodextrin shows adverse effects on chromism behaviors of the inclusion complexes.

REFERENCES

- [1] Yan, C., Li, X., Xiu, Z., & Hao, C. (2006). Journal of Molecular Structure: Thermochem, 764, 95.
- [2] Moritz, E. D. & Shyun, M. R. V. (2005). Journal of Photochemistry and Photobiology A: Chemistry, 169, 211.
- [3] Yu, J., Wei, F., Gao, W., & Zhao, C. (2002). Spectrochimica Acta Part A, 58, 249.
- [4] Fini, P., Castagnolo, M., Catucci, L., Cosma, P., & Agostiano, A. (2004). Thermochimica Acta, 418, 33.

- [5] Savarino, P., Parlati, S., Buscaino, R., Piccinini, P., Degani, I., & Barni, E. (2004). Dyes and Pigment, 60, 223.
- [6] Savarino, P., Parlati, S., Buscaino, R., Piccinini, P., Barolo, C., & Montoneri, E. (2006). Dyes and Pigments, 69, 7.
- [7] Guo, Y., Pan, J., & Jing, W. (2005). Dyes and Pigments, 63, 65.
- [8] Son, Y., Min, Y., Choi, M., & Kim, S. Dyes and Pigments, in press.
- [9] Gregory, P. (1991). High-Technology Applications of Organic Colorants. Plenum press: New York.
- [10] Crano, J. C. & Guglielmetti, (1999). Organic Photochromic and Thermochromic Compounds. Plenum press: New York.
- [11] Keum, S. R., Choi, Y. K., Lee, M. J., & Kim, S. H. (2001). Dyes and Pigments, 50, 171.
- [12] Kim, S. H., Suh, H. J., Cui, J. Z., Gal, Y. S., Jin, S. H., & Koh, K. (2002). Dyes and Pigments, 53, 251.
- [13] Lim, W. T., Cui, J. Z., Suh, H. J., Lee, H. S., Heo, N. H., & Kim, S. H. (2003). Dyes and Pigments, 56, 7.
- [14] Kim, S. H., Ahn, C. H., Keum, S. R., & Koh, K. (2005). Dyes and Pigments, 65, 179.
- [15] Kim, S. H., Bae, J. S., Hwang, S. H. (1996). Dyes and Pigments, 31, 89.
- [16] Kim, S. H., Bae, J. S., Hwang, S. H., Gwon, T. S., & Doh, M. K. (1997). Dyes and Pigments, 33, 167.